Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
1.
Clin Chim Acta ; 559: 119716, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38710402

ABSTRACT

OBJECTIVE: To integrate an enhanced molecular diagnostic technique to develop and validate a machine-learning model for diagnosing sepsis. METHODS: We prospectively enrolled patients suspected of sepsis from August 2021 to August 2023. Various feature selection algorithms and machine learning models were used to develop the model. The best classifier was selected using 5-fold cross validation set and then was applied to assess the performance of the model in the testing set. Additionally, we employed the Shapley Additive exPlanations (SHAP) method to illustrate the effects of the features. RESULTS: We established an optimized mNGS assay and proposed using the copies of microbe-specific cell-free DNA per milliliter of plasma (CPM) as the detection signal to evaluate the real burden, with strong precision and high accuracy. In total, 237 patients were eligible for participation, which were randomly assigned to either the training set (70 %, n = 165) or the testing set (30 %, n = 72). The random forest classifier achieved accuracy, AUC and F1 scores of 0.830, 0.918 and 0.856, respectively, outperforming other machine learning models in the training set. Our model demonstrated clinical interpretability and achieved good prediction performance in differentiating between bacterial sepsis and non-sepsis, with an AUC value of 0.85 and an average precision of 0.91 in the testing set. Based on the SHAP value, the top nine features of the model were PCT, CPM, CRP, ALB, SBPmin, RRmax, CREA, PLT and HRmax. CONCLUSION: We demonstrated the potential of machine-learning approaches for predicting bacterial sepsis based on optimized mcfDNA sequencing assay accurately.

2.
Skin Res Technol ; 30(5): e13720, 2024 May.
Article in English | MEDLINE | ID: mdl-38743384

ABSTRACT

BACKGROUND: Sensitive skin is hypersensitive to various external stimuli and a defective epidermal permeability barrier is an important clinical feature of sensitive skin. Claudin-5 (CLDN5) expression levels decrease in sensitive skin. This study aimed to explore the impact of CLDN5 deficiency on the permeability barrier in sensitive skin and the regulatory role of miRNAs in CLDN5 expression. MATERIALS AND METHODS: A total of 26 patients were retrospectively enrolled, and the CLDN5 expression and permeability barrier dysfunction in vitro were assessed. Then miRNA-224-5p expression was also assessed in sensitive skin. RESULTS: Immunofluorescence and electron microscopy revealed reduced CLDN5 expression, increased miR-224-5p expression, and disrupted intercellular junctions in sensitive skin. CLDN5 knockdown was associated with lower transepithelial electrical resistance (TEER) and Lucifer yellow penetration in keratinocytes and organotypic skin models. The RNA-seq and qRT-PCR results indicated elevated miR-224-5p expression in sensitive skin; MiR-224-5p directly interacted with the 3`UTR of CLDN5, resulting in CLDN5 deficiency in the luciferase reporter assay. Finally, miR-224-5p reduced TEER in keratinocyte cultures. CONCLUSION: These results suggest that the miR-224-5p-induced reduction in CLDN5 expression leads to impaired permeability barrier function, and that miR-224-5p could be a potential therapeutic target for sensitive skin.


Subject(s)
Claudin-5 , Keratinocytes , MicroRNAs , Permeability , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Claudin-5/genetics , Claudin-5/metabolism , Female , Male , Keratinocytes/metabolism , Retrospective Studies , Adult , Skin/metabolism
3.
Sci Rep ; 14(1): 11045, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744939

ABSTRACT

In individuals with acne vulgaris, alterations occur in serum metabolite composition, yet the exact causal link between these metabolites and acne development remains elusive. Using genome-wide association datasets, we performed bidirectional Mendelian randomization (MR) to investigate the potential causal relationship between 309 serum metabolites and acne vulgaris. We performed sensitivity analysis to evaluate the presence of heterogeneity and pleiotropy. Forward MR analysis found 14 serum metabolites significantly associated with acne vulgaris, and reverse MR analysis found no significant association between acne vulgaris and these serum metabolites. Through validation using data from the FinnGen database of acne vulgaris studies, we found a conclusive and significant correlation between stearoylcarnitine and acne vulgaris. This provides new evidence in the search for new targets for the treatment of acne vulgaris.


Subject(s)
Acne Vulgaris , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Acne Vulgaris/genetics , Acne Vulgaris/blood , Polymorphism, Single Nucleotide
4.
Front Pharmacol ; 15: 1374445, 2024.
Article in English | MEDLINE | ID: mdl-38650626

ABSTRACT

The death of cells can occur through various pathways, including apoptosis, necroptosis, mitophagy, pyroptosis, endoplasmic reticulum stress, oxidative stress, ferroptosis, cuproptosis, and disulfide-driven necrosis. Increasing evidence suggests that mitophagy and ferroptosis play crucial regulatory roles in the development of stroke. In recent years, the incidence of stroke has been gradually increasing, posing a significant threat to human health. Hemorrhagic stroke accounts for only 15% of all strokes, while ischemic stroke is the predominant type, representing 85% of all stroke cases. Ischemic stroke refers to a clinical syndrome characterized by local ischemic-hypoxic necrosis of brain tissue due to various cerebrovascular disorders, leading to rapid onset of corresponding neurological deficits. Currently, specific therapeutic approaches targeting the pathophysiological mechanisms of ischemic brain tissue injury mainly include intravenous thrombolysis and endovascular intervention. Despite some clinical efficacy, these approaches inevitably lead to ischemia-reperfusion injury. Therefore, exploration of treatment options for ischemic stroke remains a challenging task. In light of this background, advancements in targeted therapy for cerebrovascular diseases through mitophagy and ferroptosis offer a new direction for the treatment of such diseases. In this review, we summarize the progress of mitophagy and ferroptosis in regulating ischemia-reperfusion injury in stroke and emphasize their potential molecular mechanisms in the pathogenesis. Importantly, we systematically elucidate the role of medicinal plants and their active metabolites in targeting mitophagy and ferroptosis in ischemia-reperfusion injury in stroke, providing new insights and perspectives for the clinical development of therapeutic drugs for these diseases.

5.
Mycology ; 15(1): 110-119, 2024.
Article in English | MEDLINE | ID: mdl-38558836

ABSTRACT

Pulmonary invasive fungal infection in immunocompromised hosts is difficult to diagnose, and current tools for diagnosis or monitoring of response to antifungal treatments have inherent limitations. Droplet digital PCR (ddPCR) has emerged as a promising tool for pulmonary pathogen detection with high sensitivity. This study presents a novel ddPCR panel for rapid and sensitive identification of pulmonary fungal pathogens. First, a ddPCR method for detecting three fungal genera, including Pneumocystis, Aspergillus, and Cryptococcus, was established and evaluated. Then, the clinical validation performance of ddPCR was compared with that of qPCR using 170 specimens, and the 6 specimens with inconsistent results were further verified by metagenomics next-generation sequencing, which yielded results consistent with the ddPCR findings. Finally, the area under the ROC curve (AUC) was used to evaluate the efficiency of ddPCR. While the qPCR identified 16 (9.41%) cases of Aspergillus and 6 (3.53%) cases of Pneumocystis, ddPCR detected 20 (11.76%) Aspergillus cases and 8 (4.71%) Pneumocystis cases. The AUC for Aspergillus, Cryptococcus, and Pneumocystis was 0.974, 0.998, and 0.975, respectively. These findings demonstrated that the ddPCR assay is a highly sensitive method for identifying pathogens responsible for invasive fungal pulmonary infections, and is a promising tool for early diagnosis. .

6.
Opt Express ; 32(6): 9397-9404, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571175

ABSTRACT

This research proposed a novel pulse-shaping design for directly shaping distorted pulses after the amplification. Based on the principle of the design we made a pulse shaper. With this pulse shaper, we successfully manipulate the pulse's leading edge and width to achieve an 'M'-shaped waveform in an amplification system. Comparative experiments were conducted within this system to compare the output with and without the integration of the pulse shaper. The results show a significant suppression of the nonlinear effect upon adding the pulse shaper. This flexible and effective pulse shaper can be easily integrated into a high-power all-fiber system, supplying the capability to realize the desired output waveform and enhance the spectral quality.

7.
New Phytol ; 242(5): 2195-2206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38571285

ABSTRACT

Legume nodulation requires the detection of flavonoids in the rhizosphere by rhizobia to activate their production of Nod factor countersignals. Here we investigated the flavonoids involved in nodulation of Medicago truncatula. We biochemically characterized five flavonoid-O-methyltransferases (OMTs) and a lux-based nod gene reporter was used to investigate the response of Sinorhizobium medicae NodD1 to various flavonoids. We found that chalcone-OMT 1 (ChOMT1) and ChOMT3, but not OMT2, 4, and 5, were able to produce 4,4'-dihydroxy-2'-methoxychalcone (DHMC). The bioreporter responded most strongly to DHMC, while isoflavones important for nodulation of soybean (Glycine max) showed no activity. Mutant analysis revealed that loss of ChOMT1 strongly reduced DHMC levels. Furthermore, chomt1 and omt2 showed strongly reduced bioreporter luminescence in their rhizospheres. In addition, loss of both ChOMT1 and ChOMT3 reduced nodulation, and this phenotype was strengthened by the further loss of OMT2. We conclude that: the loss of ChOMT1 greatly reduces root DHMC levels; ChOMT1 or OMT2 are important for nod gene activation in the rhizosphere; and ChOMT1/3 and OMT2 promote nodulation. Our findings suggest a degree of exclusivity in the flavonoids used for nodulation in M. truncatula compared to soybean, supporting a role for flavonoids in rhizobial host range.


Subject(s)
Chalcones , Medicago truncatula , Plant Root Nodulation , Rhizosphere , Medicago truncatula/genetics , Medicago truncatula/microbiology , Medicago truncatula/metabolism , Chalcones/metabolism , Plant Root Nodulation/genetics , Gene Expression Regulation, Plant , Mutation/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Flavonoids/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Sinorhizobium/physiology , Sinorhizobium/genetics , Methyltransferases/metabolism , Methyltransferases/genetics
8.
Sci Total Environ ; 930: 172731, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38663605

ABSTRACT

Soil ecoenzymatic stoichiometry reflects the dynamic equilibrium between microorganism's nutrient requirements and resource availability. However, uncertainties persist regarding the key determinants of nutrient restriction in relation to microbial metabolism under varying degrees of warming. Our long-term and multi-level warming field experiment (control treatment, +0.42 °C, +1.50 °C, +2.55 °C) in a typical alpine meadow unveiled a decline in carbon (C)- and nitrogen (N)-acquired enzymes with escalating warming magnitudes, while phosphorus (P)-acquired enzymes displayed an opposite trend. Employing enzymatic stoichiometry modeling, we assessed the nutrient limitations of microbial metabolic activity and found that C and N co-limited microbial metabolic activities in the alpine meadow. Remarkably, high-level warming (+2.55 °C) exacerbated microbe N limitation, but alleviate C limitations. The structural equation modeling further indicated that alterations in soil extracellular enzyme characteristics (SES) were more effectively elucidated by microbial characteristics (microbial biomass C, N, P, and their ratios) rather than by soil nutrients (total nutrient contents and their ratios). However, the microbial control over SES diminished with higher levels of warming magnitude. Overall, our results provided novel evidence that the factors driving microbe metabolic limitation may vary with the degree of warming in Tibet alpine grasslands. Changes in nutrient demand for microorganism's metabolism in response to warming should be considered to improve nutrient management in adapting to different future warming scenarios.


Subject(s)
Grassland , Nitrogen , Soil Microbiology , Soil , Tibet , Nitrogen/metabolism , Soil/chemistry , Climate Change , Global Warming , Carbon/metabolism , Phosphorus/metabolism
9.
Biosens Bioelectron ; 255: 116229, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38554574

ABSTRACT

Quantifying trace glycoproteins in biofluids requires ultrasensitive components, but feedback is not available in the current portable platforms of point-of-care (POC) diagnosis technologies. A compact and ultrasensitive bioelectrochemical patch was based on boronate-affinity amplified organic electrochemical transistors (BAAOECTs) for POC use was developed to overcome this dilemma. Benefit from the cascading signal enhancement deriving from boronate-affinity targeting multiple regions of glycoprotein and OECTs' inherent signal amplification capability, the BAAOECTs achieved a detection limit of 300 aM within 25 min, displaying about 3 orders of magnitude improvement in sensitivity compared with the commercial electrochemical luminescence (ECL) kit. By using a microfluidic chip, a microcontroller module, and a wireless sensing system, the testing workflows of the above patch was automated, allowing for running the sample-to-answer pipeline even in a resource-limited environment. The reliability of such portable biosensing platform is well recognized in clinical diagnostic applications of heart failure. Overall, the remarkable enhanced sensitivity and automated workflow of BAAOECTs biosensing platform provide a prospective and generalized design policy for expanding the POC diagnosis capabilities of glycoproteins.


Subject(s)
Biosensing Techniques , Point-of-Care Systems , Prospective Studies , Reproducibility of Results , Glycoproteins , Electrochemical Techniques
10.
Food Chem ; 448: 139082, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537544

ABSTRACT

ß-galactosidase (lactase) is commercially important as a dietary supplement to alleviate the symptoms of lactose intolerance. This work investigated a unique activation of CMP (carboxymethylated (1 â†’ 3)-ß-d-glucan) on lactase and its mechanism by comparing it with carboxymethyl chitosan (CMCS), an inhibitor of lactase. The results illustrated that the secondary and tertiary structures of lactase were altered and its active sites exposed after complexation with CMP, and dissociation of lactase aggregates was also observed. These changes favored better accessibility of the substrate to the active sites of lactase, resulting in a maximum increase of 60.5 % in lactase activity. Furthermore, the hydrophobic and electrostatic interactions with lactase caused by the carboxymethyl group of CMP were shown to be crucial for its activation ability. Thus, the improvement of lactase activity and stability by CMP shown here is important for the development of new products in the food and pharmaceutical industries.


Subject(s)
Chitosan/analogs & derivatives , Hydrophobic and Hydrophilic Interactions , Static Electricity , beta-Galactosidase , beta-Glucans , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , beta-Glucans/chemistry , beta-Glucans/pharmacology , Chitosan/chemistry , Enzyme Stability , Kinetics , Enzyme Activation/drug effects
11.
Quant Imaging Med Surg ; 14(3): 2528-2538, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38545069

ABSTRACT

Background: The hand skeletal features of children and adolescents at different growth statuses and development periods, and the correlation between these skeletal features and hand asymmetric force are currently unclear. Thus, this study sought to investigate the hand skeletal features of children and adolescents at different growth statuses and at different periods of development, and the correlation between these skeletal features and asymmetric force in hands. Methods: A retrospective study was performed on subjects aged 4-20 years with good growth status (group A) or short stature (group B). Additional subjects aged 4-20, 21-40, and >40 years were enrolled in groups C, D, and E, respectively. All the subjects underwent left-hand posteroanterior X-ray radiography. Brachymesophalangia-V (BMP-V), conical epiphysis, epiphysis/metaphysis symmetry of the proximal phalanx (ESP), and the angle of the metacarpal-phalangeal axis were analyzed. Results: Of the 654 children and teenagers aged 4-20 years (median: 11 years) enrolled in the study, 432 were allocated to group A, of whom 237 (54.9%) were male and 195 (45.1%) were female, and 222 matched cases were allocated to group B, of whom 112 (50.5%) were male and 110 (49.5%) were female. The first to third ESPs were significantly (P<0.05) greater in group A than in group B, while the first to third angles of the metacarpal-phalangeal axis were significantly (P<0.05) smaller in group A than in group B. The correlation analysis revealed a highly significant (P<0.01) negative correlation between the ESP and angle of the metacarpal-phalangeal axis (r=-0.948, -0.926, -0.940, -0.885, and -0.848, respectively). The incidence of BMP-V was 15.4% in all patients, while that of conical epiphysis was 19.5%. The incidence of BMP-V and conical epiphysis was significantly (P<0.05) smaller in group A than in group B (11.1% vs. 23.8% for BMP-V and 16.6% vs. 25.2% for conical epiphysis, respectively). Additionally, 216 subjects were enrolled in group C (108 male and 108 female), 185 subjects were enrolled in in group D (93 male and 92 female), and 176 subjects were enrolled in in group E (104 male and 72 female). The second to fifth ESPs in group C were significantly (P<0.05) smaller than those in both groups D and E, while the second to fifth angles of the metacarpal-phalangeal axis were significantly (P<0.05) larger in group C than in both groups D and E. A BMP-V was present in 35 (16.2%) patients in group C, 8 (4.3%) in group D, and 2 (1.1%) in group E, and the difference among the three groups was statistically significant (P<0.05). Conclusions: The epiphyseal symmetry of the proximal phalanges is poor in short stature children and adolescents, and the angle between the metacarpal and phalangeal axes is larger in children and adolescents with short stature than those with normal height and good growth status. A negative correlation was found between the epiphyseal symmetry of the proximal phalanges and asymmetrical stress.

12.
Food Chem X ; 22: 101250, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38440057

ABSTRACT

Herein, six types of polyphenol-crosslinked gelatin conjugates (PGCs) with ≥ two gelatin molecules were prepared using a covalent crosslinking method with two types of polyphenols (tannic acid and caffeic acid) and three types of gelatins (bovine bone gelatin, cold water fish skin gelatin, and porcine skin gelatin) for the emulsion stabilization. The structural and functional properties of the PGCs were dependent on both polyphenol and gelatin types. The storage stability of the conjugate-stabilized emulsions was dependent on the polyphenol crosslinking, NaCl addition, and heating pretreatment. In particular, NaCl addition promoted the liquid-gel transition of the emulsions: 0.2 mol/L > 0.1 mol/L > 0.0 mol/L. Moreover, NaCl addition also increased the creaming stability of the emulsions stabilized by PGCs except tannic acid-crosslinked bovine bone gelatin conjugate. All the results provided useful knowledge on the effects of molecular modification and physical processing on the properties of gelatins.

13.
Gene ; 908: 148281, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38360124

ABSTRACT

The upregulation of methyltransferase-like 3 (METTL3) has been associated with the progression of esophageal cancer. However, METTL3-induced N6-methyladenosine (m6A) alterations on the downstream target mRNAs in esophageal squamous cell carcinoma (ESCC) are not yet fully understood. Our study revealed that silencing METTL3 resulted in a significant decrease in ESCC cell proliferation and metastasis in vitro and in vivo. Additionally, the adhesion molecule with Ig like domain 2 (AMIGO2) was identified as a potential downstream target of both METTL3 and YTH Domain-Containing Protein 1 (YTHDC1) in ESCC cells. Functionally, AMIGO2 augmented the malignant behaviors of ESCC cells in vitro and in vivo, and its overexpression can rescue the inhibition of the proliferation and migration in ESCC cells induced by METTL3 or YTHDC1 knockdown. Furthermore, our findings revealed that knockdown of METTL3 decreased m6A modification in the 5'-untranslated regions (5'UTR) of AMIGO2 precursor mRNA (pre-mRNA), and YTHDC1 interacted with AMIGO2 pre-mRNA to regulate AMIGO2 expression by modulating the splicing process of AMIGO2 pre-mRNA in ESCC cells. These findings highlighted a novel role of the METTL3-m6A-YTHDC1-AMIGO2 axis in regulating ESCC cell proliferation and motility, suggesting its potential as a therapeutic target for ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , RNA Precursors/metabolism , Cell Proliferation/genetics , Up-Regulation , Methyltransferases/genetics , Methyltransferases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA Splicing Factors/genetics
14.
Sci Total Environ ; 922: 171190, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38401725

ABSTRACT

As the largest and highest plateau in the world, ecosystems on the Tibetan Plateau (TP) imply fundamental ecological significance to the globe. Among the variety, alpine grassland ecosystem on the TP forms a critical part of the global ecosystem and its soil carbon accounts over nine tenths of ecosystem carbon. Revealing soil carbon dynamics and the underlying driving forces is vital for clarifying ecosystem carbon sequestration capacity on the TP. By selecting northern TP, the core region of the TP, this study investigates spatiotemporal dynamics of soil total carbon and the driving forces based on two phases of soil sampling data from the 2010s and the 2020s. The research findings show that soil total carbon density (STCD) in total-surface (0-30 cm) in the 2010s (8.85 ± 3.08 kg C m-2) significantly decreased to the 2020s (7.15 ± 2.90 kg C m-2), with a decreasing rate (ΔSTCD) of -0.17 ± 0.39 kg C m-2 yr-1. Moreover, in both periods, STCD exhibited a gradual increase with soil depth deepening, while ΔSTCD loss was more apparent in top-surface and mid-surface than in sub-surface. Spatially, ΔSTCD loss in alpine desert grassland was -0.41 ± 0.48 kg C m-2 yr-1, which is significantly higher than that in alpine grassland (-0.11 ± 0.31 kg C m-2 yr-1) or alpine meadow (-0.04 ± 0.28 kg C m-2 yr-1). The STCD in 2010s explained >30 % of variances in ΔSTCD among the set of covariates. Moreover, rising temperature aggravates ΔSTCD loss in alpine desert grassland, while enhanced precipitation alleviates ΔSTCD loss in alpine meadow. This study sheds light on the influences of climate and background carbon on soil total carbon loss, which can be benchmark for predicting carbon dynamics under future climate change scenarios.

15.
mBio ; 15(4): e0026324, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38407058

ABSTRACT

Azoles are the primary antifungal drugs used to treat infections caused by Aspergillus fumigatus. However, the emergence of azole resistance in A. fumigatus has become a global health concern despite the low proportion of resistant isolates in natural populations. In bacteria, antibiotic resistance incurs a fitness cost that renders strains less competitive in the absence of antibiotics. Consequently, fitness cost is a key determinant of the spread of resistant mutations. However, the cost of azole resistance and its underlying causes in A. fumigatus remain poorly understood. In this observation, we revealed that the 10 out of 15 screened azole-resistant isolates, which possessed the most common azole-targeted cyp51A mutations, particularly the presence of tandem repeats in the promoter region, exhibit fitness cost when competing with the susceptible isolates in azole-free environments. These results suggest that fitness cost may significantly influence the dynamics of azole resistance, which ultimately contributes to the low prevalence of azole-resistant A. fumigatus isolates in the environment and clinic. By constructing in situ cyp51A mutations in a parental azole-susceptible strain and reintroducing the wild-type cyp51A gene into the azole-resistant strains, we demonstrated that fitness cost is not directly dependent on cyp51A mutations but is instead associated with the evolution of variable mutations related to conidial germination or other unknown development-related processes. Importantly, our observations unexpectedly revealed that some azole-resistant isolates showed no detectable fitness cost, and some even exhibited significantly increased competitive fitness in azole-free environments, highlighting the potential risk associated with the prevalence of these isolates. IMPORTANCE: Azole resistance in the human fungal pathogen Aspergillus fumigatus presents a global public health challenge. Understanding the epidemic trends and evolutionary patterns of azole resistance is critical to prevent and control the spread of azole-resistant isolates. The primary cause is the mutation of the drug target 14α-sterol-demethylase Cyp51A, yet its impact on competitive ability remains uncertain. Our competition assays revealed a diverse range of fitness outcomes for environmental and clinical cyp51A-mutated isolates. We have shown that this fitness cost is not reliant on cyp51A mutations but might be linked to unknown mutations induced by stress conditions. Among these isolates, the majority displayed fitness costs, while a few displayed enhanced competitive ability, which may have a potential risk of spread and the need to closely monitor these isolates. Our observation reveals the variation in fitness costs among azole-resistant isolates of A. fumigatus, highlighting the significant role of fitness cost in the spread of resistant strains.


Subject(s)
Aspergillus fumigatus , Azoles , Humans , Azoles/pharmacology , Fungal Proteins/genetics , Antifungal Agents/pharmacology , Mutation , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests
16.
Front Microbiol ; 15: 1326339, 2024.
Article in English | MEDLINE | ID: mdl-38371936

ABSTRACT

Background: Numerous studies have suggested a correlation between gut microbiota and acne vulgaris; however, no specific causal link has been explored. Materials and methods: To investigate the possible causal relationship between gut microbiota and acne vulgaris, this study employed a large-scale genome-wide association study (GWAS) summary statistic. Initially, a two-sample Mendelian randomization (MR) analysis was utilized to identify the specific gut microflora responsible for acne vulgaris. We used the Inverse Variance Weighted (IVW) method as the main MR analysis method. Additionally, we assessed heterogeneity and horizontal pleiotropy, while also examining the potential influence of individual single-nucleotide polymorphisms (SNPs) on the analysis results. In order to eliminate gut microbiota with reverse causal associations, we conducted reverse MR analysis. Multivariate Mendelian randomization analysis (MVMR) was then employed to verify the independence of the causal associations. Finally, we performed SNP annotation on the instrumental variables of independent gut microbiota and acne vulgaris to determine the genes where these genetic variations are located. We also explored the biological functions of these genes through enrichment analysis. Result: The IVW method of forward MR identified nine gut microbes with a causal relationship with acne vulgaris (p < 0.05). The findings from the sensitivity analysis demonstrate the absence of heterogeneity or horizontal pleiotropy, and leave-one-out analysis indicates that the results are not driven by a single SNP. Additionally, the Reverse MR analysis excluded two reverse-correlated pathogenic gut microbes. And then, MVMR was used to analyze seven gut microbes, and it was found that Cyanobacterium and Family XIII were risk factors for acne vulgaris, while Ruminococcus1 and Ruminiclostridium5 were protective factors for acne vulgaris. After conducting biological annotation, we identified six genes (PLA2G4A, FADS2, TIMP17, ADAMTS9, ZC3H3, and CPSF4L) that may be associated with the pathogenic gut microbiota of acne vulgaris patients. The enrichment analysis results indicate that PLA2G4A/FADS2 is associated with fatty acid metabolism pathways. Conclusion: Our study found independent causal relationships between four gut microbes and acne vulgaris, and revealed a genetic association between acne vulgaris patients and gut microbiota. Consider preventing and treating acne vulgaris by interfering with the relative content of these four gut microbes.

17.
Insights Imaging ; 15(1): 48, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38360968

ABSTRACT

BACKGROUND: Crohn's disease (CD) is an inflammatory disease of the gastrointestinal tract. The disease behavior changes over time, and endoscopy is crucial in evaluating and monitoring the course of CD. To reduce the economic burden of patients and alleviate the discomfort associated with ineffective examination, it is necessary to fully understand the location, extent, and severity of intestinal stenosis in patients with CD before endoscopy. This study aimed to utilize imaging features of magnetic resonance enterography (MRE) to evaluate intestinal stenosis in patients with CD and to predict whether endoscopy could be passed. METHODS: MRE data of patients with CD were collected, while age, gender, disease duration, and laboratory test parameters were also gathered. Two radiologists analyzed the images and assessed whether endoscopy could be passed based on the imaging performance. Imaging features of MRE were analyzed in groups based on endoscopy results. RESULTS: The readers evaluated the imaging performance for 86 patients to determine if endoscopy could be passed and performed a consistency test (compared between two readers k = 0.812, p = 0.000). In the univariate analysis, statistical differences were observed in the degree of T1WI enhancement, thickness of the intestine wall at the stenosis, and diameter of the upstream intestine between the two groups of whether endoscopy was passed. In multivariate logistic regression, the diameter of the upstream intestine was identified to be an independent factor in predicting whether endoscopy was passed or not (OR = 3.260, p = 0.046). CONCLUSIONS: The utilization of MRE signs for assessing the passage of an endoscope through the narrow segment revealed that the diameter of the upstream intestine emerged as an independent predictor of endoscopic passage. Before performing an endoscopy, MRE can aid in evaluating the passage of the endoscope. CRITICAL RELEVANCE STATEMENT: This retrospective study explored the imaging features of MRE to evaluate intestinal stenosis in patients with Crohn's disease and determined that the diameter of the upstream intestine of the stenotic segment was an independent predictor in assessing endoscopic passage. KEY POINTS: • Endoscopy is crucial in evaluating and monitoring the course of Crohn's disease. • The diameter of the upstream intestine of the stenotic segment was an independent predictor in assessing endoscopic passage. • MRE can aid in evaluating the passage of the endoscope in stenotic segments of Crohn's disease.

18.
Food Chem ; 441: 138360, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38219361

ABSTRACT

Camellia japonica L. is rich in bioactive compounds, but its health-enhancing potential is often overshadowed by its ornamental value. Notably, triterpenoid saponins are prominent due to their surfactant properties. MolNetEnhancer revealed 537 compounds in C. japonica leaves water extract, classified into 32 categories, including 38 triterpenoid saponins. To enrich triterpenoid saponins, the process of D101 resin chromatography was employed. Molecular networking analysis based on UPLC-Q-TOF and quantitative analysis based on HPLC revealed saponins concentrated in fractions 3 and 4 (68.3% transfer). MS2LDA and NAP predicted structures for 38 triterpenoid saponins, revealing nearly half of them are potential new compounds. Comprehensive chromatographic and spectroscopic methods were used for purification and structural illustration of triterpenoid saponins, yielding 13, including 7 new compounds. Statistical analysis and in vitro assays revealed the cytotoxic and anti-inflammatory activities of these triterpenoid saponins played a crucial role in the anticancer effects.


Subject(s)
Antineoplastic Agents , Camellia , Saponins , Triterpenes , Chromatography, High Pressure Liquid/methods , Camellia/chemistry , Mass Spectrometry , Saponins/chemistry , Triterpenes/analysis
19.
Int J Antimicrob Agents ; 63(2): 107056, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081548

ABSTRACT

OBJECTIVES: The increasing emergence of hypervirulent Klebsiella pneumoniae (hv-Kp) and carbapenem-resistant K. pneumoniae (CR-Kp) is a serious and substantial public health problem. The use of the last resort antimicrobials, tigecycline and polymyxin to combat infections is complicated by the expanding repertoire of newly-identified CR-hvKp. The transmission and co-occurrence of the corresponding antimicrobial resistance and virulence determinants are largely unknown. The aim of this study was to investigate the dissemination and dynamics of CR-Kp and its antibiotic resistance in a hospitalised patient. METHODS: Metagenomic next-generation sequencing (mNGS) was conducted for different specimens collected from an elderly male hospitalised patient. CR-Kp strains were examined using antibiotic susceptibility and string testing. Antimicrobial and virulence genes were annotated using whole-genome sequencing (WGS). RESULTS: A clinical case of a patient infected with a variety of CR-Kp isolates was reported. The co-occurrence of KPC-2 and NDM-1 in the patient was revealed. The CR-Kp isolates, such as BALF2, and Sputum T1 and T3, were classified into ST11 and ST147, respectively. The genetic signature (iuc operon) of hypervirulence was identified in strain T1, although string testing indicated its intermediate virulence. CONCLUSIONS: In this study, multiple infections of CR-Kp isolates were revealed by mNGS, and their dissemination was attributed to plasmid variations, mgrB inactivation and integrative conjugative elements (ICEs). Furthermore, the finding indicated one likely convergence to form CR-hvKp, different from acquisition of carbapenem-resistance determinants in hvKp. A combination of mNGS and WGS is beneficial for clinical diagnosis and anti-infection therapy, and facilitates a better understanding of genetic variants conferring antimicrobial and virulence properties.


Subject(s)
Klebsiella Infections , Klebsiella , Humans , Male , Aged , Klebsiella Infections/drug therapy , Carbapenems/pharmacology , Carbapenems/therapeutic use , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , High-Throughput Nucleotide Sequencing
20.
CNS Neurosci Ther ; 30(2): e14395, 2024 02.
Article in English | MEDLINE | ID: mdl-37553557

ABSTRACT

AIMS: This study investigated the impact of transcutaneous auricular vagus nerve stimulation (taVNS) on working memory (WM) in refractory temporal lobe epilepsy (rTLE) and the underlying mechanisms. METHODS: In this randomized double-blind study, 28 rTLE patients were subjected to an active or sham taVNS (a/s-taVNS) protocol for 20 weeks (a-taVNS group, n = 19; s-ta VNS group, n = 9). Patients performed visual WM tasks during stimulation and neural oscillations were simultaneously recorded by 19-channel electroencephalography. RESULTS: Compared with the baseline state, reaction time was significantly shorter after 20 weeks of taVNS in the a-taVNS group (p = 0.010), whereas no difference was observed in the s-taVNS group (p > 0.05). The power spectral density (PSD) of the theta frequency band in the Fz channel decreased significantly after a-taVNS during WM-encoding (p = 0.020), maintenance (p = 0.038), and retrieval (p = 0.039) phases, but not in the s-taVNS group (all p > 0.05). CONCLUSION: Neural oscillations during WM were altered by taVNS and WM performance was improved. Alterations in frontal midline theta oscillations may be a marker for the effect of taVNS on cognitive regulation.


Subject(s)
Epilepsy, Temporal Lobe , Vagus Nerve Stimulation , Humans , Memory, Short-Term , Epilepsy, Temporal Lobe/therapy , Double-Blind Method , Vagus Nerve
SELECTION OF CITATIONS
SEARCH DETAIL
...